トップページに戻る    次のC#のサンプルへ    前のC#のサンプルへ

20-006 L-60(敷き詰め)

問題

小田原充宏さんのL−60の敷き詰め問題を解きます。



10個のピースは下記となります。
各ピースは回転や裏返しても使えます。



いずれも、すべてのL型ピースを使う問題です。

Q1 3×6と7×6をつくる


Q2 4×6と6×6をつくる


Q3 5×6を2つ、つくる


Q4 8×6と4×3をつくる


Q5 3×5と9×5をつくる


Q6 4×5と8×5をつくる


Q7 5×5と7×5をつくる


ソース

using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    //ピースごとの配置候補
    static Dictionary<char, List<bool[,]>> HaitiKouhoListDict =
        new Dictionary<char, List<bool[,]>>();

    static char[] PieceNameArr = { '1', '2', '3', '4',
                                   '5', '6', '7', '8', '9', 'A'};

    struct JyoutaiDef
    {
        internal List<char[,]> BanArrList;
        internal int CurrBanInd;
        internal int CurrX;
        internal int CurrY;
    }

    static void Main()
    {
        var sw = System.Diagnostics.Stopwatch.StartNew();

        //2次元配列の各要素に、半角空白をセット
        Action<char[,]> ActArrFill_1 = (pTargetArr) =>
        {
            for (int X = 0; X <= pTargetArr.GetUpperBound(0); X++)
                for (int Y = 0; Y <= pTargetArr.GetUpperBound(1); Y++)
                    pTargetArr[X, Y] = ' ';
        };

        char[,] Q1Arr1 = new char[3, 6]; ActArrFill_1(Q1Arr1);
        char[,] Q1Arr2 = new char[7, 6]; ActArrFill_1(Q1Arr2);

        char[,] Q2Arr1 = new char[4, 6]; ActArrFill_1(Q2Arr1);
        char[,] Q2Arr2 = new char[6, 6]; ActArrFill_1(Q2Arr2);

        char[,] Q3Arr1 = new char[5, 6]; ActArrFill_1(Q3Arr1);
        char[,] Q3Arr2 = new char[5, 6]; ActArrFill_1(Q3Arr2);

        char[,] Q4Arr1 = new char[8, 6]; ActArrFill_1(Q4Arr1);
        char[,] Q4Arr2 = new char[4, 3]; ActArrFill_1(Q4Arr2);

        char[,] Q5Arr1 = new char[3, 5]; ActArrFill_1(Q5Arr1);
        char[,] Q5Arr2 = new char[9, 5]; ActArrFill_1(Q5Arr2);

        char[,] Q6Arr1 = new char[4, 5]; ActArrFill_1(Q6Arr1);
        char[,] Q6Arr2 = new char[8, 5]; ActArrFill_1(Q6Arr2);

        char[,] Q7Arr1 = new char[5, 5]; ActArrFill_1(Q7Arr1);
        char[,] Q7Arr2 = new char[7, 5]; ActArrFill_1(Q7Arr2);

        var QuestionArrList = new List<char[,]>() { Q1Arr1, Q1Arr2 };
        bool ValidEdakiriQ4 = false; //Q4の枝切りが有効か?

        foreach (char AnyPiece in PieceNameArr) {
            HaitiKouhoListDict[AnyPiece] = DeriveHaitiKouhoList(AnyPiece);
        }

        //回転解の除外で、ピース1は回転させない
        HaitiKouhoListDict['1'].RemoveRange(1, HaitiKouhoListDict['1'].Count - 1);

        var stk = new Stack<JyoutaiDef>();
        JyoutaiDef WillPush;
        WillPush.BanArrList = QuestionArrList;

        WillPush.CurrBanInd = 0;
        WillPush.CurrX = WillPush.CurrY = 0;
        stk.Push(WillPush);

        while (stk.Count > 0) {
            JyoutaiDef Popped = stk.Pop();

            //クリア判定
            if (Popped.BanArrList[Popped.CurrBanInd].Cast<char>().All(X => X != ' ')) {
                if (++Popped.CurrBanInd > QuestionArrList.Count - 1) {
                    Console.WriteLine("解を発見。経過時間={0}", sw.Elapsed);
                    PrintAnswer(Popped.BanArrList);
                    return;
                }
                Popped.CurrX = Popped.CurrY = 0;
            }

            //Y座標の繰上げ処理
            if (Popped.CurrY > Popped.BanArrList[Popped.CurrBanInd].GetUpperBound(1)) {
                Popped.CurrY = 0;
                Popped.CurrX++;
            }

            //最終列を超えた場合
            if (Popped.CurrX > Popped.BanArrList[Popped.CurrBanInd].GetUpperBound(0)) continue;

            //使用済のピース名のListジェネリック
            var UsedPieceList = new List<char>();
            foreach (char[,] EachBanArr in Popped.BanArrList) {
                UsedPieceList.AddRange(EachBanArr.Cast<char>().Distinct());
            }

            //Q4で、3*4の面積を作成可能なのは、
            //3単位、4単位、5単位のピースの組み合わせのみ

            if (ValidEdakiriQ4 && Popped.CurrBanInd == 0)
                if (UsedPieceList.Contains('7') && UsedPieceList.Contains('8')) continue;

            foreach (char AnyPiece in PieceNameArr) {
                if (UsedPieceList.Contains(AnyPiece)) continue;

                if (ValidEdakiriQ4 && Popped.CurrBanInd == 0)
                    if (AnyPiece == '9' || AnyPiece == 'A') continue;

                //ピースの配置候補リスト
                var HaitiKouhoList = new List<bool[,]>();
                HaitiKouhoList.AddRange(HaitiKouhoListDict[AnyPiece]);

                //現在のマス目が空白の場合は、マス目を埋める必要あり
                if (Popped.BanArrList[Popped.CurrBanInd][Popped.CurrX, Popped.CurrY] == ' ') {
                    HaitiKouhoList.RemoveAll(X => X[0, 0] == false);
                }

                //マス目にピースを埋めれない候補をRemove
                HaitiKouhoList.RemoveAll(X =>
                    CanFillPiece(X, Popped.CurrX, Popped.CurrY,
                                 Popped.BanArrList[Popped.CurrBanInd]) == false);

                //ピースを配置する経路のPush処理
                foreach (bool[,] AnyPieceMap in HaitiKouhoList) {
                    WillPush.CurrBanInd = Popped.CurrBanInd;
                    WillPush.BanArrList = new List<char[,]>(Popped.BanArrList);
                    WillPush.BanArrList[WillPush.CurrBanInd] =
                        (char[,])Popped.BanArrList[Popped.CurrBanInd].Clone();
                    WillPush.CurrX = Popped.CurrX;
                    if (AnyPiece == '4')
                        WillPush.CurrY = Popped.CurrY + 1;
                    else WillPush.CurrY = Popped.CurrY;

                    for (int X = 0; X <= AnyPieceMap.GetUpperBound(0); X++) {
                        for (int Y = 0; Y <= AnyPieceMap.GetUpperBound(1); Y++) {
                            if (AnyPieceMap[X, Y] == false) continue;
                            WillPush.BanArrList[WillPush.CurrBanInd]
                                [Popped.CurrX + X, Popped.CurrY + Y] = AnyPiece;
                        }
                    }
                    stk.Push(WillPush);
                }
            }

            //現在のマス目が空白でない場合は、ピースを配置しない経路のPush
            if (Popped.BanArrList[Popped.CurrBanInd][Popped.CurrX, Popped.CurrY] != ' ') {
                WillPush.CurrBanInd = Popped.CurrBanInd;
                WillPush.BanArrList = Popped.BanArrList;
                WillPush.CurrX = Popped.CurrX;
                WillPush.CurrY = Popped.CurrY + 1;
                stk.Push(WillPush);
            }
        }
    }

    //ピース名を引数として、回転させた配置のListを返す
    static List<bool[,]> DeriveHaitiKouhoList(char pPieceName)
    {
        bool[,] wkArr = null;

        //■
        //■
        //■
        //■
        //■■■■■
        if (pPieceName == '1') {
            wkArr = new bool[5, 5];
            wkArr[0, 0] = true; wkArr[1, 0] = wkArr[2, 0] = wkArr[3, 0] = wkArr[4, 0] = false;
            wkArr[0, 1] = true; wkArr[1, 1] = wkArr[2, 1] = wkArr[3, 1] = wkArr[4, 1] = false;
            wkArr[0, 2] = true; wkArr[1, 2] = wkArr[2, 2] = wkArr[3, 2] = wkArr[4, 2] = false;
            wkArr[0, 3] = true; wkArr[1, 3] = wkArr[2, 3] = wkArr[3, 3] = wkArr[4, 3] = false;
            wkArr[0, 4] = wkArr[1, 4] = wkArr[2, 4] = wkArr[3, 4] = wkArr[4, 4] = true;
        }

        //■
        //■
        //■
        //■
        //■■■■
        if (pPieceName == '2') {
            wkArr = new bool[4, 5];
            wkArr[0, 0] = true; wkArr[1, 0] = wkArr[2, 0] = wkArr[3, 0] = false;
            wkArr[0, 1] = true; wkArr[1, 1] = wkArr[2, 1] = wkArr[3, 1] = false;
            wkArr[0, 2] = true; wkArr[1, 2] = wkArr[2, 2] = wkArr[3, 2] = false;
            wkArr[0, 3] = true; wkArr[1, 3] = wkArr[2, 3] = wkArr[3, 3] = false;
            wkArr[0, 4] = wkArr[1, 4] = wkArr[2, 4] = wkArr[3, 4] = true;
        }

        //■
        //■
        //■
        //■
        //■■■
        if (pPieceName == '3') {
            wkArr = new bool[3, 5];
            wkArr[0, 0] = true; wkArr[1, 0] = wkArr[2, 0] = false;
            wkArr[0, 1] = true; wkArr[1, 1] = wkArr[2, 1] = false;
            wkArr[0, 2] = true; wkArr[1, 2] = wkArr[2, 2] = false;
            wkArr[0, 3] = true; wkArr[1, 3] = wkArr[2, 3] = false;
            wkArr[0, 4] = wkArr[1, 4] = wkArr[2, 4] = true;
        }

        //■
        //■
        //■
        //■
        //■■
        if (pPieceName == '4') {
            wkArr = new bool[2, 5];
            wkArr[0, 0] = true; wkArr[1, 0] = false;
            wkArr[0, 1] = true; wkArr[1, 1] = false;
            wkArr[0, 2] = true; wkArr[1, 2] = false;
            wkArr[0, 3] = true; wkArr[1, 3] = false;
            wkArr[0, 4] = wkArr[1, 4] = true;
        }

        //■
        //■
        //■
        //■■■■
        if (pPieceName == '5') {
            wkArr = new bool[4, 4];
            wkArr[0, 0] = true; wkArr[1, 0] = wkArr[2, 0] = wkArr[3, 0] = false;
            wkArr[0, 1] = true; wkArr[1, 1] = wkArr[2, 1] = wkArr[3, 1] = false;
            wkArr[0, 2] = true; wkArr[1, 2] = wkArr[2, 2] = wkArr[3, 2] = false;
            wkArr[0, 3] = wkArr[1, 3] = wkArr[2, 3] = wkArr[3, 3] = true;
        }

        //■
        //■
        //■
        //■■■
        if (pPieceName == '6') {
            wkArr = new bool[3, 4];
            wkArr[0, 0] = true; wkArr[1, 0] = wkArr[2, 0] = false;
            wkArr[0, 1] = true; wkArr[1, 1] = wkArr[2, 1] = false;
            wkArr[0, 2] = true; wkArr[1, 2] = wkArr[2, 2] = false;
            wkArr[0, 3] = wkArr[1, 3] = wkArr[2, 3] = true;
        }

        //■
        //■
        //■
        //■■
        if (pPieceName == '7') {
            wkArr = new bool[2, 4];
            wkArr[0, 0] = true; wkArr[1, 0] = false;
            wkArr[0, 1] = true; wkArr[1, 1] = false;
            wkArr[0, 2] = true; wkArr[1, 2] = false;
            wkArr[0, 3] = wkArr[1, 3] = true;
        }

        //■
        //■
        //■■■
        if (pPieceName == '8') {
            wkArr = new bool[3, 3];
            wkArr[0, 0] = true; wkArr[1, 0] = wkArr[2, 0] = false;
            wkArr[0, 1] = true; wkArr[1, 1] = wkArr[2, 0] = false;
            wkArr[0, 2] = wkArr[1, 2] = wkArr[2, 2] = true;
        }

        //■
        //■
        //■■
        if (pPieceName == '9') {
            wkArr = new bool[2, 3];
            wkArr[0, 0] = true; wkArr[1, 0] = false;
            wkArr[0, 1] = true; wkArr[1, 1] = false;
            wkArr[0, 2] = wkArr[1, 2] = true;
        }

        //■
        //■■
        if (pPieceName == 'A') {
            wkArr = new bool[2, 2];
            wkArr[0, 0] = true; wkArr[1, 0] = false;
            wkArr[0, 1] = wkArr[1, 1] = true;
        }

        return DeriveKaitenArrList(wkArr);
    }

    //配列を引数として、回転させた配列のリストをDistinctして返す
    static List<bool[,]> DeriveKaitenArrList(bool[,] pBaseArr)
    {
        var KaitenArrList = new List<bool[,]>();

        //1個目はそのまま
        //■
        //■■■

        //2個目は1個目を時計回りに90度回転
        //■■
        //■
        //■

        //3個目は2個目を時計回りに90度回転
        //■■■
        //  ■

        //4個目は3個目を時計回りに90度回転
        // ■
        // ■
        //■■

        //5個目は1個目とX軸で線対称
        //■■■
        //■

        //6個目は5個目を時計回りに90度回転
        //■■
        // ■
        // ■

        //7個目は6個目を時計回りに90度回転
        //  ■
        //■■■

        //8個目は7個目を時計回りに90度回転
        //■
        //■
        //■■

        int BaseArrUB_X = pBaseArr.GetUpperBound(0);
        int BaseArrUB_Y = pBaseArr.GetUpperBound(1);

        for (int I = 1; I <= 8; I++) KaitenArrList.Add(null);
        for (int P = 0; P <= 6; P += 2) KaitenArrList[P] = new bool[BaseArrUB_X + 1, BaseArrUB_Y + 1];
        for (int P = 1; P <= 7; P += 2) KaitenArrList[P] = new bool[BaseArrUB_Y + 1, BaseArrUB_X + 1];

        for (int X = 0; X <= BaseArrUB_X; X++) {
            for (int Y = 0; Y <= BaseArrUB_Y; Y++) {
                bool SetVal = pBaseArr[X, Y];
                KaitenArrList[0][X, Y] = SetVal;
                KaitenArrList[1][Y, BaseArrUB_X - X] = SetVal;
                KaitenArrList[2][BaseArrUB_X - X, BaseArrUB_Y - Y] = SetVal;
                KaitenArrList[3][BaseArrUB_Y - Y, X] = SetVal;

                KaitenArrList[4][X, BaseArrUB_Y - Y] = SetVal;
                KaitenArrList[5][BaseArrUB_Y - Y, BaseArrUB_X - X] = SetVal;
                KaitenArrList[6][BaseArrUB_X - X, Y] = SetVal;
                KaitenArrList[7][Y, X] = SetVal;
            }
        }

        //Distinctする
        for (int I = KaitenArrList.Count - 1; 0 <= I; I--) {
            for (int J = 0; J <= I - 1; J++) {
                if (KaitenArrList[I].GetUpperBound(0) !=
                    KaitenArrList[J].GetUpperBound(0)) continue;
                if (KaitenArrList[I].GetUpperBound(1) !=
                    KaitenArrList[J].GetUpperBound(1)) continue;

                IEnumerable<bool> wkEnum1 = KaitenArrList[I].Cast<bool>();
                IEnumerable<bool> wkEnum2 = KaitenArrList[J].Cast<bool>();
                if (wkEnum1.SequenceEqual(wkEnum2) == false) continue;

                KaitenArrList.RemoveAt(I);
                break;
            }
        }
        return KaitenArrList;
    }

    //マス目にピースを埋めれるか
    static bool CanFillPiece(bool[,] pPieceMap, int pTargetX, int pTargetY, char[,] pBanArr)
    {
        for (int X = 0; X <= pPieceMap.GetUpperBound(0); X++) {
            if (pTargetX + X > pBanArr.GetUpperBound(0)) return false;
            for (int Y = 0; Y <= pPieceMap.GetUpperBound(1); Y++) {
                if (pTargetY + Y > pBanArr.GetUpperBound(1)) return false;
                if (pPieceMap[X, Y] && pBanArr[pTargetX + X, pTargetY + Y] != ' ')
                    return false;
            }
        }
        return true;
    }

    //解を出力
    static void PrintAnswer(List<char[,]> pBanArrList)
    {
        var sb = new System.Text.StringBuilder();
        for (int I = 0; I <= pBanArrList.Count - 1; I++) {
            sb.AppendFormat("{0}個目の平面", I + 1);
            sb.AppendLine();
            for (int Y = 0; Y <= pBanArrList[I].GetUpperBound(1); Y++) {
                for (int X = 0; X <= pBanArrList[I].GetUpperBound(0); X++) {
                    sb.Append(pBanArrList[I][X, Y]);
                }
                sb.AppendLine();
            }
            sb.AppendLine();
        }
        Console.WriteLine(sb.ToString());
    }
}


実行結果

解を発見。経過時間=00:00:24.1084084
1個目の平面
774
374
374
374
344
333

2個目の平面
6662222
1568882
1568AA2
1568A92
1555592
1111199


解説

20-024 イージーキューブの合体問題(立体)(Q12)のソースを流用した上で、
問題の定義ロジックを変更してます。(Int型経由ではなくChar型で直接定義)