E8本(数学)
次のE8本(数学)の問題へ
前のE8本(数学)の問題へ
E8本(数学) 068 Number of Multiples 2
C#のソース
using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
static string InputPattern = "InputX";
static List<string> GetInputList()
{
var WillReturn = new List<string>();
if (InputPattern == "Input1") {
WillReturn.Add("100 3");
WillReturn.Add("2 3 5");
//74
}
else if (InputPattern == "Input2") {
WillReturn.Add("100 3");
WillReturn.Add("2 4 6");
//50
}
else if (InputPattern == "Input3") {
WillReturn.Add("10000000000000 10");
WillReturn.Add("13 17 19 23 29 31 37 41 43 47");
//3324865541894
}
else {
string wkStr;
while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
}
return WillReturn;
}
static long mN;
static long[] mVArr;
static void Main()
{
List<string> InputList = GetInputList();
long[] wkArr = InputList[0].Split(' ').Select(pX => long.Parse(pX)).ToArray();
mN = wkArr[0];
mVArr = InputList[1].Split(' ').Select(pX => long.Parse(pX)).ToArray();
List<long[]> DFSResult = ExecDFS();
long Answer = 0;
foreach (long[] EachValList in DFSResult) {
long Length = EachValList.Length;
long LCM = DeriveLCM(EachValList);
long CurrCnt = mN / LCM;
if (Length % 2 == 1) {
Answer += CurrCnt;
}
else {
Answer -= CurrCnt;
}
}
Console.WriteLine(Answer);
}
struct JyoutaiDef
{
internal long CurrInd;
internal List<long> SelectedValList;
}
static List<long[]> ExecDFS()
{
var WillReturn = new List<long[]>();
var Stk = new Stack<JyoutaiDef>();
JyoutaiDef WillPush;
WillPush.CurrInd = 0;
WillPush.SelectedValList = new List<long>();
Stk.Push(WillPush);
while (Stk.Count > 0) {
JyoutaiDef Popped = Stk.Pop();
if (Popped.SelectedValList.Count > 0) {
WillReturn.Add(Popped.SelectedValList.ToArray());
}
for (long I = Popped.CurrInd; I <= mVArr.GetUpperBound(0); I++) {
WillPush.CurrInd = I + 1;
WillPush.SelectedValList = new List<long>(Popped.SelectedValList);
WillPush.SelectedValList.Add(mVArr[I]);
Stk.Push(WillPush);
}
}
return WillReturn;
}
// 列挙を引数として、最小公倍数を返す
static long DeriveLCM(IEnumerable<long> pEnum)
{
long LCM = pEnum.First();
foreach (long EachLong in pEnum) {
LCM = DeriveLCM2(LCM, EachLong);
}
return LCM;
}
// 2つの数のLCMを求める
static long DeriveLCM2(long p1, long p2)
{
long GCD = DeriveGCD(p1, p2);
return (p1 / GCD) * p2;
}
// ユークリッドの互除法で2数の最大公約数を求める
static long DeriveGCD(long pVal1, long pVal2)
{
long WarareruKazu = pVal2;
long WaruKazu = pVal1;
while (true) {
long Amari = WarareruKazu % WaruKazu;
if (Amari == 0) return WaruKazu;
WarareruKazu = WaruKazu;
WaruKazu = Amari;
}
}
}
解説
包除原理を使ってます。