using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
static string InputPattern = "InputX";
static List<string> GetInputList()
{
var WillReturn = new List<string>();
if (InputPattern == "Input1") {
WillReturn.Add("2 3");
WillReturn.Add("0 1 2");
WillReturn.Add("3 4 5");
//32
}
else if (InputPattern == "Input2") {
WillReturn.Add("2 5");
WillReturn.Add("0 5 0 0 0");
WillReturn.Add("0 0 0 9 1");
//13
}
else if (InputPattern == "Input3") {
WillReturn.Add("2 5");
WillReturn.Add("0 2 0 0 0");
WillReturn.Add("0 0 0 9 1");
//11
}
else {
string wkStr;
while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
}
return WillReturn;
}
static long[] GetSplitArr(string pStr)
{
return (pStr == "" ? new string[0] : pStr.Split(' ')).Select(pX => long.Parse(pX)).ToArray();
}
static long[,] mBanArr;
static long UB_X;
static long UB_Y;
static void Main()
{
List<string> InputList = GetInputList();
mBanArr = CreateBanArr(InputList.Skip(1));
UB_X = mBanArr.GetUpperBound(0);
UB_Y = mBanArr.GetUpperBound(1);
HashSet<long> GoalPosSet = DeriveGoalPosSet();
var InsPQueue_Arr = new PQueue_Arr();
PQueue_Arr.PQueueJyoutaiDef WillEnqueue;
WillEnqueue.CurrX = 0;
WillEnqueue.CurrY = 0;
WillEnqueue.Kyori = 0;
WillEnqueue.Cost = 0;
InsPQueue_Arr.Enqueue(WillEnqueue);
long Answer = long.MaxValue;
var SegTreeDict = new Dictionary<long, SegmentTree>();
for (long X = 0; X <= UB_X; X++) {
for (long Y = 0; Y <= UB_Y; Y++) {
SegTreeDict[GetHash(X, Y)] = new SegmentTree((UB_X + 1) * (UB_Y + 1), long.MaxValue);
}
}
while (InsPQueue_Arr.Count() > 0) {
PQueue_Arr.PQueueJyoutaiDef Deququed = InsPQueue_Arr.Dequeue();
//Console.WriteLine("CurrX={0},CurrY={1},Kyori={2},Cost={3}",
// Deququed.CurrX, Deququed.CurrY, Deququed.Kyori, Deququed.Cost);
long CurrPosHash = GetHash(Deququed.CurrX, Deququed.CurrY);
if (Answer <= Deququed.Cost) {
continue;
}
Action<long, long> EnqueueAct = (pNewX, pNewY) =>
{
if (pNewX < 0 || UB_X < pNewX) return;
if (pNewY < 0 || UB_Y < pNewY) return;
WillEnqueue.CurrX = pNewX;
WillEnqueue.CurrY = pNewY;
WillEnqueue.Kyori = Deququed.Kyori + 1;
if (WillEnqueue.Kyori > (UB_X + 1) * (UB_Y + 1)) {
return;
}
long NewPosHash = GetHash(pNewX, pNewY);
// クリア判定
if (GoalPosSet.Contains(NewPosHash)) {
long AnswerKouho = Deququed.Cost + mBanArr[pNewX, pNewY];
AnswerKouho += (mBanArr[pNewX, pNewY] - 1) * Deququed.Kyori * 2; // 往復分
AnswerKouho += Deququed.Kyori; // 片道分
Answer = Math.Min(Answer, AnswerKouho);
}
else {
WillEnqueue.Cost = Deququed.Cost + mBanArr[pNewX, pNewY];
WillEnqueue.Cost += mBanArr[pNewX, pNewY] * Deququed.Kyori * 2 + 1;
// セグ木で枝切り
SegmentTree CurrSegTree = SegTreeDict[NewPosHash];
long RangeSta = 0;
long RangeEnd = WillEnqueue.Kyori;
long RangeMin = CurrSegTree.Internal_Query(RangeSta, RangeEnd);
if (RangeMin <= WillEnqueue.Cost) {
return;
}
CurrSegTree.Update(WillEnqueue.Kyori, WillEnqueue.Cost);
InsPQueue_Arr.Enqueue(WillEnqueue);
}
};
EnqueueAct(Deququed.CurrX, Deququed.CurrY - 1);
EnqueueAct(Deququed.CurrX, Deququed.CurrY + 1);
EnqueueAct(Deququed.CurrX - 1, Deququed.CurrY);
EnqueueAct(Deququed.CurrX + 1, Deququed.CurrY);
}
Console.WriteLine(Answer);
}
// ゴール座標のsetを返す
static HashSet<long> DeriveGoalPosSet()
{
var GoalPosSet = new HashSet<long>();
if (mBanArr[UB_X, UB_Y] != 0) {
GoalPosSet.Add(GetHash(UB_X, UB_Y));
return GoalPosSet;
}
var Stk = new Stack<JyoutaiDef>();
JyoutaiDef WillPush;
WillPush.CurrX = UB_X;
WillPush.CurrY = UB_Y;
Stk.Push(WillPush);
var VisitedSet = new HashSet<long>();
VisitedSet.Add(GetHash(UB_X, UB_Y));
while (Stk.Count > 0) {
JyoutaiDef Popped = Stk.Pop();
Action<long, long> PushAct = (pNewX, pNewY) =>
{
if (pNewX < 0 || UB_X < pNewX) return;
if (pNewY < 0 || UB_Y < pNewY) return;
if (mBanArr[pNewX, pNewY] != 0) return;
long CurrHash = GetHash(pNewX, pNewY);
if (VisitedSet.Add(CurrHash)) {
WillPush.CurrX = pNewX;
WillPush.CurrY = pNewY;
Stk.Push(WillPush);
}
};
PushAct(Popped.CurrX, Popped.CurrY - 1);
PushAct(Popped.CurrX, Popped.CurrY + 1);
PushAct(Popped.CurrX - 1, Popped.CurrY);
PushAct(Popped.CurrX + 1, Popped.CurrY);
}
foreach (long EachPosHash in VisitedSet) {
long CurrX = EachPosHash / 100;
long CurrY = EachPosHash % 100;
Action<long, long> AddAct = (pTargetX, pTargetY) =>
{
if (pTargetX < 0 || UB_X < pTargetX) return;
if (pTargetY < 0 || UB_Y < pTargetY) return;
if (mBanArr[pTargetX, pTargetY] == 0) return;
long CurrHash = GetHash(pTargetX, pTargetY);
GoalPosSet.Add(CurrHash);
};
AddAct(CurrX, CurrY - 1);
AddAct(CurrX, CurrY + 1);
AddAct(CurrX - 1, CurrY);
AddAct(CurrX + 1, CurrY);
}
return GoalPosSet;
}
struct JyoutaiDef
{
internal long CurrX;
internal long CurrY;
}
// 座標のハッシュ値を返す
static long GetHash(long pX, long pY)
{
return pX * 100 + pY;
}
////////////////////////////////////////////////////////////////
// IEnumerable<string>をlongの2次元配列に設定
////////////////////////////////////////////////////////////////
static long[,] CreateBanArr(IEnumerable<string> pStrEnum)
{
var StrList = new List<string>(pStrEnum);
if (StrList.Count == 0) {
return new long[0, 0];
}
long[] LongArr = { };
Action<string> SplitAct = pStr =>
LongArr = pStr.Split(' ').Select(pX => long.Parse(pX)).ToArray();
SplitAct(StrList[0]);
long UB_X = LongArr.GetUpperBound(0);
long UB_Y = StrList.Count - 1;
long[,] WillReturn = new long[UB_X + 1, UB_Y + 1];
for (long Y = 0; Y <= UB_Y; Y++) {
SplitAct(StrList[(int)Y]);
for (long X = 0; X <= UB_X; X++) {
WillReturn[X, Y] = LongArr[X];
}
}
return WillReturn;
}
}
#region PQueue_Arr
// 内部で配列使用の優先度付きキュー (根のValが最小)
internal class PQueue_Arr
{
internal struct PQueueJyoutaiDef
{
internal long CurrX;
internal long CurrY;
internal long Kyori;
internal long Cost;
}
private PQueueJyoutaiDef[] mHeapArr;
private long mHeapArrCnt = 0;
// コンストラクタ
internal PQueue_Arr()
{
mHeapArr = new PQueueJyoutaiDef[65535];
}
internal bool IsEmpty()
{
return mHeapArrCnt == 0;
}
internal long Count()
{
return mHeapArrCnt;
}
internal long Peek()
{
return mHeapArr[1].Cost;
}
// エンキュー処理
internal void Enqueue(PQueueJyoutaiDef pAddJyoutai)
{
long CurrNode = 1 + mHeapArrCnt;
if (mHeapArr.GetUpperBound(0) < CurrNode) {
ExtendArr();
}
mHeapArr[CurrNode] = pAddJyoutai;
mHeapArrCnt++;
while (1 < CurrNode && mHeapArr[CurrNode / 2].Cost > mHeapArr[CurrNode].Cost) {
PQueueJyoutaiDef Swap = mHeapArr[CurrNode];
mHeapArr[CurrNode] = mHeapArr[CurrNode / 2];
mHeapArr[CurrNode / 2] = Swap;
CurrNode /= 2;
}
}
// 配列のExtend
private void ExtendArr()
{
PQueueJyoutaiDef[] NewHeapArr = new PQueueJyoutaiDef[mHeapArrCnt * 2];
mHeapArr.CopyTo(NewHeapArr, 0);
mHeapArr = NewHeapArr;
}
// デキュー処理
internal PQueueJyoutaiDef Dequeue()
{
PQueueJyoutaiDef TopNode = mHeapArr[1];
long LastNode = mHeapArrCnt;
mHeapArr[1] = mHeapArr[LastNode];
mHeapArrCnt--;
MinHeapify(1);
return TopNode;
}
// 根ノードを指定し、根から葉へヒープ構築
private void MinHeapify(long pRootNode)
{
if (mHeapArrCnt <= 1) {
return;
}
long Left = pRootNode * 2;
long Right = pRootNode * 2 + 1;
// 左の子、自分、右の子で値が最小のノードを選ぶ
long Smallest = mHeapArr[pRootNode].Cost;
long SmallestNode = pRootNode;
if (Left <= mHeapArrCnt && mHeapArr[Left].Cost < Smallest) {
Smallest = mHeapArr[Left].Cost;
SmallestNode = Left;
}
if (Right <= mHeapArrCnt && mHeapArr[Right].Cost < Smallest) {
Smallest = mHeapArr[Right].Cost;
SmallestNode = Right;
}
// 子ノードのほうが小さい場合
if (SmallestNode != pRootNode) {
PQueueJyoutaiDef Swap = mHeapArr[SmallestNode];
mHeapArr[SmallestNode] = mHeapArr[pRootNode];
mHeapArr[pRootNode] = Swap;
// 再帰的に呼び出し
MinHeapify(SmallestNode);
}
}
}
#endregion
#region SegmentTree
// SegmentTreeクラス (RMQ and 1点更新)
internal class SegmentTree
{
private long[] mTreeNodeArr;
private long UB; // 木のノードの配列のUB
private long mLeafCnt; // 葉ノードの数
private long mExternalArrUB;
// ノードの添字を引数とし、範囲の開始添字と終了添字を持つ配列
private struct RangeInfoDef
{
internal long StaInd;
internal long EndInd;
}
private RangeInfoDef[] mRangeInfo;
// ノードのIndexの列挙を返す
internal IEnumerable<long> GetNodeIndEnum()
{
for (long I = 0; I <= mExternalArrUB; I++) {
yield return I;
}
}
// 木のノードのUBを返す
internal long GetUB()
{
return mExternalArrUB;
}
// コンストラクタ
internal SegmentTree(long pExternalArrUB, long pInitVal)
{
mExternalArrUB = pExternalArrUB;
// 簡単のため、葉ノード数を2のべき乗に
long ArrLength = 0;
for (long I = 1; I < long.MaxValue; I *= 2) {
ArrLength += I;
mLeafCnt = I;
if (pExternalArrUB + 1 < mLeafCnt) break;
}
// すべての値をpInitValに
UB = ArrLength - 1;
mTreeNodeArr = new long[UB + 1];
for (long I = 0; I <= UB; I++) {
mTreeNodeArr[I] = pInitVal;
}
// ノードの添字を引数とし、範囲の開始添字と終了添字を持つ配列の作成
mRangeInfo = new RangeInfoDef[UB + 1];
for (long I = 0; I <= UB; I++) {
if (I == 0) {
RangeInfoDef WillSet1;
WillSet1.StaInd = 0;
WillSet1.EndInd = mLeafCnt - 1;
mRangeInfo[I] = WillSet1;
continue;
}
long ParentNode = DeriveParentNode(I);
RangeInfoDef ParentRangeInfo = mRangeInfo[ParentNode];
RangeInfoDef WillSet2;
long Mid = (ParentRangeInfo.StaInd + ParentRangeInfo.EndInd) / 2;
if (I % 2 == 1) { // 奇数ノードの場合
WillSet2.StaInd = ParentRangeInfo.StaInd;
WillSet2.EndInd = Mid;
}
else { // 偶数ノードの場合
WillSet2.StaInd = Mid + 1;
WillSet2.EndInd = ParentRangeInfo.EndInd;
}
mRangeInfo[I] = WillSet2;
}
}
// 親ノードの添字を取得
private long DeriveParentNode(long pTarget)
{
return (pTarget - 1) / 2;
}
// 子ノードの添字(小さいほう)を取得
private long DeriveChildNode(long pTarget)
{
return pTarget * 2 + 1;
}
// 葉ノードの配列の添字を木の添字に変換して返す
private long DeriveTreeNode(long pLeafArrInd)
{
long BaseInd = UB - mLeafCnt + 1;
return BaseInd + pLeafArrInd;
}
// 葉ノードの配列のK番目の値をNewValに変更
internal void Update(long pK, long pNewVal)
{
long CurrNode = DeriveTreeNode(pK);
mTreeNodeArr[CurrNode] = pNewVal;
// 登りながら更新
while (CurrNode > 0) {
CurrNode = DeriveParentNode(CurrNode);
long ChildNode1 = DeriveChildNode(CurrNode);
long ChildNode2 = ChildNode1 + 1;
mTreeNodeArr[CurrNode] =
Math.Min(mTreeNodeArr[ChildNode1], mTreeNodeArr[ChildNode2]);
}
}
// 開始添字と終了添字とカレントノードを引数として、最小値を返す
internal long Internal_Query(long pSearchStaInd, long pSearchEndInd)
{
return Private_Query(pSearchStaInd, pSearchEndInd, 0);
}
private long Private_Query(long pSearchStaInd, long pSearchEndInd, long pCurrNode)
{
long CurrNodeStaInd = mRangeInfo[pCurrNode].StaInd;
long CurrNodeEndInd = mRangeInfo[pCurrNode].EndInd;
// OverLapしてなければ、long.MaxValue
if (CurrNodeEndInd < pSearchStaInd || pSearchEndInd < CurrNodeStaInd)
return long.MaxValue;
// 完全に含んでいれば、このノードの値
if (pSearchStaInd <= CurrNodeStaInd && CurrNodeEndInd <= pSearchEndInd)
return mTreeNodeArr[pCurrNode];
// そうでなければ、2つの子の最小値
long ChildNode1 = DeriveChildNode(pCurrNode);
long ChildNode2 = ChildNode1 + 1;
long ChildVal1 = Private_Query(pSearchStaInd, pSearchEndInd, ChildNode1);
long ChildVal2 = Private_Query(pSearchStaInd, pSearchEndInd, ChildNode2);
return Math.Min(ChildVal1, ChildVal2);
}
internal void DebugPrint()
{
for (long I = 0; I <= UB; I++) {
Console.WriteLine("mTreeNodeArr[{0}] = {1}", I, mTreeNodeArr[I]);
}
}
}
#endregion