AtCoderのABC
次のABCの問題へ
前のABCの問題へ
ABC034-C 経路
C#のソース
using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
static string InputPattern = "InputX";
static List<string> GetInputList()
{
var WillReturn = new List<string>();
if (InputPattern == "Input1") {
WillReturn.Add("4 3");
//10
}
else if (InputPattern == "Input2") {
WillReturn.Add("123 456");
//210368064
}
else {
string wkStr;
while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
}
return WillReturn;
}
const long Hou = 1000000000 + 7;
static void Main()
{
List<string> InputList = GetInputList();
long[] wkArr = InputList[0].Split(' ').Select(X => long.Parse(X)).ToArray();
long W = wkArr[0];
long H = wkArr[1];
long MinVal = Math.Min(W - 1, H - 1);
long SumVal = W - 1 + H - 1;
long Answer = 1;
for (long I = SumVal; SumVal - MinVal < I; I--) {
Answer *= I;
Answer %= Hou;
}
for (long I = 2; I <= MinVal; I++) {
Answer *= DeriveGyakugen(I);
Answer %= Hou;
}
Console.WriteLine(Answer);
}
//引数の逆元を求める
static long DeriveGyakugen(long pLong)
{
return DeriveBekijyou(pLong, Hou - 2, Hou);
}
//繰り返し2乗法で、(NのP乗) Mod Mを求める
static long DeriveBekijyou(long pN, long pP, long pM)
{
long CurrJyousuu = pN % pM;
long CurrShisuu = 1;
long WillReturn = 1;
while (true) {
//対象ビットが立っている場合
if ((pP & CurrShisuu) > 0) {
WillReturn = (WillReturn * CurrJyousuu) % pM;
}
CurrShisuu *= 2;
if (CurrShisuu > pP) return WillReturn;
CurrJyousuu = (CurrJyousuu * CurrJyousuu) % pM;
}
}
}
解説
フェルマーの小定理と繰り返し2乗法で、
逆元を求めてます。