using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
static string InputPattern = "InputX";
static List<string> GetInputList()
{
var WillReturn = new List<string>();
if (InputPattern == "Input1") {
WillReturn.Add("3 2 1");
//6
}
else if (InputPattern == "Input2") {
WillReturn.Add("100 100 0");
//73074801
}
else if (InputPattern == "Input3") {
WillReturn.Add("60522 114575 7559");
//479519525
}
else {
string wkStr;
while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
}
return WillReturn;
}
static long mN;
static long mM;
static long mK;
const long Hou = 998244353;
static void Main()
{
List<string> InputList = GetInputList();
long[] wkArr = InputList[0].Split(' ').Select(pX => long.Parse(pX)).ToArray();
mN = wkArr[0];
mM = wkArr[1];
mK = wkArr[2];
long Result1 = Solve();
Console.WriteLine(Result1);
}
static long Solve()
{
long Answer = 0;
var InsChooseMod = new ChooseMod(mN, Hou);
// 隣接マスの同色数で全探索
for (long I = 0; I <= mK; I++) {
long CurrPatternCnt = mM;
CurrPatternCnt *= DeriveBekijyou(mM - 1, mN - I - 1, Hou);
CurrPatternCnt %= Hou;
long ChooseCnt = InsChooseMod.DeriveChoose(mN - 1, I);
CurrPatternCnt *= ChooseCnt;
CurrPatternCnt %= Hou;
Answer += CurrPatternCnt;
Answer %= Hou;
}
return Answer;
}
// 繰り返し2乗法で、(NのP乗) Mod Mを求める
static long DeriveBekijyou(long pN, long pP, long pM)
{
long CurrJyousuu = pN % pM;
long CurrShisuu = 1;
long WillReturn = 1;
while (true) {
// 対象ビットが立っている場合
if ((pP & CurrShisuu) > 0) {
WillReturn = (WillReturn * CurrJyousuu) % pM;
}
CurrShisuu *= 2;
if (CurrShisuu > pP) return WillReturn;
CurrJyousuu = (CurrJyousuu * CurrJyousuu) % pM;
}
}
static long SolveNaive()
{
long UB = mK;
// 場合の数[隣接した同色ブロック数]なDP表
long[] PrevDP = new long[UB + 1];
PrevDP[0] = 1;
for (long I = 1; I <= mN; I++) {
long[] CurrDP = new long[UB + 1];
if (I == 1) {
CurrDP[0] = mM;
}
else {
for (long J = 0; J <= UB; J++) {
if (PrevDP[J] == 0) break;
Action<long, long> UpdateAct = (pNewJ, pAddVal) =>
{
if (pNewJ > UB) return;
CurrDP[pNewJ] += pAddVal;
CurrDP[pNewJ] %= Hou;
};
// 同じ色で隣接させる場合
UpdateAct(J + 1, PrevDP[J]);
// 違う色で隣接させる場合
long ProdVal = PrevDP[J] * (mM - 1);
ProdVal %= Hou;
UpdateAct(J, ProdVal);
}
}
PrevDP = CurrDP;
}
long Answer = 0;
foreach (long EachLong in PrevDP) {
Answer += EachLong;
Answer %= Hou;
}
return Answer;
}
}
#region ChooseMod
// 二項係数クラス
internal class ChooseMod
{
private long mHou;
private long[] mFacArr;
private long[] mFacInvArr;
private long[] mInvArr;
// コンストラクタ
internal ChooseMod(long pCnt, long pHou)
{
mHou = pHou;
mFacArr = new long[pCnt + 1];
mFacInvArr = new long[pCnt + 1];
mInvArr = new long[pCnt + 1];
mFacArr[0] = mFacArr[1] = 1;
mFacInvArr[0] = mFacInvArr[1] = 1;
mInvArr[1] = 1;
for (int I = 2; I <= pCnt; I++) {
mFacArr[I] = mFacArr[I - 1] * I % mHou;
mInvArr[I] = mHou - mInvArr[mHou % I] * (mHou / I) % mHou;
mFacInvArr[I] = mFacInvArr[I - 1] * mInvArr[I] % mHou;
}
}
// nCrを返す
internal long DeriveChoose(long pN, long pR)
{
if (pN < pR) return 0;
if (pN < 0 || pR < 0) return 0;
return mFacArr[pN] * (mFacInvArr[pR] * mFacInvArr[pN - pR] % mHou) % mHou;
}
}
#endregion