AtCoderのABC    次のABCの問題へ    前のABCの問題へ

ABC243-E Edge Deletion


問題へのリンク


C#のソース

using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static string InputPattern = "InputX";

    static List<string> GetInputList()
    {
        var WillReturn = new List<string>();

        if (InputPattern == "Input1") {
            WillReturn.Add("3 3");
            WillReturn.Add("1 2 2");
            WillReturn.Add("2 3 3");
            WillReturn.Add("1 3 6");
            //1
        }
        else if (InputPattern == "Input2") {
            WillReturn.Add("5 4");
            WillReturn.Add("1 3 3");
            WillReturn.Add("2 3 9");
            WillReturn.Add("3 5 3");
            WillReturn.Add("4 5 3");
            //0
        }
        else if (InputPattern == "Input3") {
            WillReturn.Add("5 10");
            WillReturn.Add("1 2 71");
            WillReturn.Add("1 3 9");
            WillReturn.Add("1 4 82");
            WillReturn.Add("1 5 64");
            WillReturn.Add("2 3 22");
            WillReturn.Add("2 4 99");
            WillReturn.Add("2 5 1");
            WillReturn.Add("3 4 24");
            WillReturn.Add("3 5 18");
            WillReturn.Add("4 5 10");
            //5
        }
        else {
            string wkStr;
            while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
        }
        return WillReturn;
    }

    static void Main()
    {
        List<string> InputList = GetInputList();

        int[] wkArr = { };
        Action<string> SplitAct = pStr =>
            wkArr = pStr.Split(' ').Select(pX => int.Parse(pX)).ToArray();

        SplitAct(InputList[0]);
        int N = wkArr[0];
        int UB = N;

        long[,] KyoriArr = new long[UB + 1, UB + 1];

        const long INFTY = long.MaxValue;

        // 初期化処理
        for (int I = 0; I <= UB; I++) {
            for (int J = 0; J <= UB; J++) {
                KyoriArr[I, J] = (I == J) ? 0 : INFTY;
            }
        }

        var EdgeSet = new HashSet<string>();
        foreach (string EachStr in InputList.Skip(1)) {
            SplitAct(EachStr);
            KyoriArr[wkArr[0], wkArr[1]] = wkArr[2];
            KyoriArr[wkArr[1], wkArr[0]] = wkArr[2];
            EdgeSet.Add(GetHash(wkArr[0], wkArr[1]));
        }
        int BeforeEdgeCnt = EdgeSet.Count;

        // ワーシャルフロイド法
        for (int K = 0; K <= UB; K++) {
            for (int I = 0; I <= UB; I++) {
                if (KyoriArr[I, K] == INFTY) continue;
                for (int J = 0; J <= UB; J++) {
                    if (KyoriArr[K, J] == INFTY) continue;

                    if (K == I) continue;
                    if (K == J) continue;

                    long CurrKouho = KyoriArr[I, K] + KyoriArr[K, J];
                    if (KyoriArr[I, J] >= CurrKouho) {
                        KyoriArr[I, J] = CurrKouho;
                        string Hash = GetHash(I, J);
                        //Console.WriteLine("RemoveEdge={0}", Hash);
                        EdgeSet.Remove(Hash);
                    }
                }
            }
        }

        Console.WriteLine(BeforeEdgeCnt - EdgeSet.Count);
    }

    static string GetHash(int pSta, int pEnd)
    {
        int Node1 = Math.Max(pSta, pEnd);
        int Node2 = Math.Min(pSta, pEnd);

        return string.Format("{0},{1}", Node1, Node2);
    }
}


解説

考察すると
任意の枝が不要になる必要十分条件は、
その枝がなくても、その枝の両端のノードの最短距離が変わらないことだと分かります。

後は、ワーシャルフロイド法で
最短距離を更新するタイミングで
不要な枝のハッシュ値を求めるようにしてます。