using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
static string InputPattern = "InputX";
static List<string> GetInputList()
{
var WillReturn = new List<string>();
if (InputPattern == "Input1") {
WillReturn.Add("3");
WillReturn.Add("1 1");
//4
}
else if (InputPattern == "Input2") {
WillReturn.Add("5");
WillReturn.Add("3 1 2 1");
//332748122
}
else {
string wkStr;
while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
}
return WillReturn;
}
const long Hou = 998244353;
static long[] mAArr;
static long UB;
// フェニック木
static Fenwick_Tree mIns_Fenwick_Tree;
static void Main()
{
List<string> InputList = GetInputList();
mAArr = InputList[1].Split(' ').Select(pX => long.Parse(pX)).ToArray();
UB = mAArr.GetUpperBound(0);
mIns_Fenwick_Tree = new Fenwick_Tree(mAArr.Length, Hou);
for (long I = UB; 0 <= I; I--) {
DeriveEx(I);
}
Console.WriteLine(mIns_Fenwick_Tree.GetSum(0, 0));
}
static void DeriveEx(long pCurrInd)
{
// 当たりの確率の分母
long AtariBunbo = mAArr[pCurrInd] + 1;
// 当たりの確率の分子
long AtariBunsi = AtariBunbo - 1;
// 当たりの確率の逆数
long CurrEx = AtariBunbo;
CurrEx *= DeriveGyakugen(AtariBunsi);
CurrEx %= Hou;
long RangeSta = pCurrInd + 1;
long RangeEnd = pCurrInd + mAArr[pCurrInd];
// 当たりの中での条件付確率
long SumEx = mIns_Fenwick_Tree.GetSum(RangeSta, RangeEnd);
SumEx *= DeriveGyakugen(AtariBunsi);
SumEx %= Hou;
CurrEx += SumEx;
CurrEx %= Hou;
if (CurrEx < 0) CurrEx += Hou;
mIns_Fenwick_Tree.Add(pCurrInd, CurrEx);
}
// 引数の逆元を求める
static Dictionary<long, long> mMemo2 = new Dictionary<long, long>();
static long DeriveGyakugen(long pLong)
{
if (mMemo2.ContainsKey(pLong)) {
return mMemo2[pLong];
}
return mMemo2[pLong] = DeriveBekijyou(pLong, Hou - 2, Hou);
}
// 繰り返し2乗法で、(NのP乗) Mod Mを求める
static long DeriveBekijyou(long pN, long pP, long pM)
{
long CurrJyousuu = pN % pM;
long CurrShisuu = 1;
long WillReturn = 1;
while (true) {
// 対象ビットが立っている場合
if ((pP & CurrShisuu) > 0) {
WillReturn = (WillReturn * CurrJyousuu) % pM;
}
CurrShisuu *= 2;
if (CurrShisuu > pP) return WillReturn;
CurrJyousuu = (CurrJyousuu * CurrJyousuu) % pM;
}
}
}
// フェニック木
#region Fenwick_Tree
internal class Fenwick_Tree
{
private long[] mBitArr;
private long mExternalArrUB;
private long mHou;
// ノードのIndexの列挙を返す
internal IEnumerable<long> GetNodeIndEnum()
{
for (long I = 0; I <= mExternalArrUB; I++) {
yield return I;
}
}
// 木のノードのUBを返す
internal long GetUB()
{
return mExternalArrUB;
}
// コンストラクタ
internal Fenwick_Tree(long pExternalArrUB, long pHou)
{
mExternalArrUB = pExternalArrUB;
// フェニック木の外部配列は0オリジンで、
// フェニック木の内部配列は1オリジンなため、2を足す
mBitArr = new long[pExternalArrUB + 2];
mHou = pHou;
}
// [pSta,pEnd] のSumを返す
internal long GetSum(long pSta, long pEnd)
{
long Result = GetSum(pEnd) - GetSum(pSta - 1);
Result %= mHou;
if (Result < 0) Result += mHou;
return Result;
}
// [0,pEnd] のSumを返す
internal long GetSum(long pEnd)
{
pEnd++; // 1オリジンに変更
long Sum = 0;
while (pEnd >= 1) {
Sum += mBitArr[pEnd];
Sum %= mHou;
pEnd -= pEnd & -pEnd;
}
if (Sum < 0) Sum += mHou;
return Sum;
}
// [I] に Xを加算
internal void Add(long pI, long pX)
{
pI++; // 1オリジンに変更
pX %= mHou;
while (pI <= mBitArr.GetUpperBound(0)) {
mBitArr[pI] += pX;
mBitArr[pI] %= mHou;
pI += pI & -pI;
}
}
}
#endregion