AtCoderのABC    次のABCの問題へ    前のABCの問題へ

ABC339-E Smooth Subsequence


問題へのリンク


C#のソース

using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static string InputPattern = "InputX";

    static List<string> GetInputList()
    {
        var WillReturn = new List<string>();

        if (InputPattern == "Input1") {
            WillReturn.Add("4 2");
            WillReturn.Add("3 5 1 2");
            //3
        }
        else if (InputPattern == "Input2") {
            WillReturn.Add("5 10");
            WillReturn.Add("10 20 100 110 120");
            //3
        }
        else if (InputPattern == "Input3") {
            WillReturn.Add("11 7");
            WillReturn.Add("21 10 3 19 28 12 11 3 3 15 16");
            //6
        }
        else {
            string wkStr;
            while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
        }
        return WillReturn;
    }

    static void Main()
    {
        List<string> InputList = GetInputList();
        long[] wkArr = InputList[0].Split(' ').Select(pX => long.Parse(pX)).ToArray();
        long Diff = wkArr[1];

        long[] NArr = InputList[1].Split(' ').Select(pX => long.Parse(pX)).ToArray();
        long UB = NArr.GetUpperBound(0);
        long NMax = NArr.Max();

        var InsSegmentTree = new SegmentTree(NMax + 1);

        foreach (long EachInd in InsSegmentTree.GetNodeIndEnum()) {
            InsSegmentTree.Update(EachInd, 0);
        }

        // 数列の最大長[現在位置]なDP表
        long[] DPArr = new long[UB + 1];

        for (long I = 0; I <= UB; I++) {
            long RangeMin = NArr[I] - Diff;
            long RangeMax = NArr[I] + Diff;
            RangeMin = Math.Max(0, RangeMin);
            RangeMax = Math.Min(NMax, RangeMax);
            //Console.WriteLine("区間は[{0},{1}]", RangeMin, RangeMax);

            long GetVal = InsSegmentTree.Internal_Query(RangeMin, RangeMax);
            DPArr[I] = GetVal + 1;
            InsSegmentTree.Update(NArr[I], GetVal + 1);
        }

        Console.WriteLine(DPArr.Max());
    }
}

#region SegmentTree
// SegmentTreeクラス (RMaxQ and 1点更新)
internal class SegmentTree
{
    private long[] mTreeNodeArr;
    private long UB; // 木のノードの配列のUB
    private long mLeafCnt; // 葉ノードの数
    private long mConstructorLeafCnt; // 葉ノードの数 (コンストラクタで指定したもの)

    // ノードの添字を引数とし、範囲の開始添字と終了添字を持つ配列
    private struct RangeInfoDef
    {
        internal long StaInd;
        internal long EndInd;
    }
    private RangeInfoDef[] mRangeInfo;

    // ノードのIndexの列挙を返す
    internal IEnumerable<long> GetNodeIndEnum()
    {
        for (long I = 0; I <= mConstructorLeafCnt - 1; I++) {
            yield return I;
        }
    }

    // 木のノードのUBを返す
    internal long GetUB()
    {
        return mConstructorLeafCnt - 1;
    }

    // コンストラクタ
    internal SegmentTree(long pLeafCnt)
    {
        mConstructorLeafCnt = pLeafCnt;

        // 簡単のため、葉ノード数を2のべき乗に
        long ArrLength = 0;
        for (long I = 1; I < long.MaxValue; I *= 2) {
            ArrLength += I;
            mLeafCnt = I;

            if (pLeafCnt < mLeafCnt) break;
        }

        // すべての値をlong.MinValueに
        UB = ArrLength - 1;
        mTreeNodeArr = new long[UB + 1];
        for (long I = 0; I <= UB; I++) {
            mTreeNodeArr[I] = long.MinValue;
        }

        // ノードの添字を引数とし、範囲の開始添字と終了添字を持つ配列の作成
        mRangeInfo = new RangeInfoDef[UB + 1];
        for (long I = 0; I <= UB; I++) {
            if (I == 0) {
                RangeInfoDef WillSet1;
                WillSet1.StaInd = 0;
                WillSet1.EndInd = mLeafCnt - 1;
                mRangeInfo[I] = WillSet1;
                continue;
            }
            long ParentNode = DeriveParentNode(I);
            RangeInfoDef ParentRangeInfo = mRangeInfo[ParentNode];

            RangeInfoDef WillSet2;
            long Mid = (ParentRangeInfo.StaInd + ParentRangeInfo.EndInd) / 2;

            if (I % 2 == 1) { // 奇数ノードの場合
                WillSet2.StaInd = ParentRangeInfo.StaInd;
                WillSet2.EndInd = Mid;
            }
            else { // 偶数ノードの場合
                WillSet2.StaInd = Mid + 1;
                WillSet2.EndInd = ParentRangeInfo.EndInd;
            }
            mRangeInfo[I] = WillSet2;
        }
    }

    // 親ノードの添字を取得
    private long DeriveParentNode(long pTarget)
    {
        return (pTarget - 1) / 2;
    }

    // 子ノードの添字(小さいほう)を取得
    private long DeriveChildNode(long pTarget)
    {
        return pTarget * 2 + 1;
    }

    // 葉ノードの配列の添字を木の添字に変換して返す
    private long DeriveTreeNode(long pLeafArrInd)
    {
        long BaseInd = UB - mLeafCnt + 1;
        return BaseInd + pLeafArrInd;
    }

    // 葉ノードの配列のK番目の値をNewValに変更
    internal void Update(long pK, long pNewVal)
    {
        long CurrNode = DeriveTreeNode(pK);
        mTreeNodeArr[CurrNode] = pNewVal;

        // 登りながら更新
        while (CurrNode > 0) {
            CurrNode = DeriveParentNode(CurrNode);
            long ChildNode1 = DeriveChildNode(CurrNode);
            long ChildNode2 = ChildNode1 + 1;
            mTreeNodeArr[CurrNode] =
                Math.Max(mTreeNodeArr[ChildNode1], mTreeNodeArr[ChildNode2]);
        }
    }

    // 開始添字と終了添字とカレントノードを引数として、最大値を返す
    internal long Internal_Query(long pSearchStaInd, long pSearchEndInd)
    {
        return Private_Query(pSearchStaInd, pSearchEndInd, 0);
    }
    private long Private_Query(long pSearchStaInd, long pSearchEndInd, long pCurrNode)
    {
        long CurrNodeStaInd = mRangeInfo[pCurrNode].StaInd;
        long CurrNodeEndInd = mRangeInfo[pCurrNode].EndInd;

        // OverLapしてなければ、long.MinValue
        if (CurrNodeEndInd < pSearchStaInd || pSearchEndInd < CurrNodeStaInd)
            return long.MinValue;

        // 完全に含んでいれば、このノードの値
        if (pSearchStaInd <= CurrNodeStaInd && CurrNodeEndInd <= pSearchEndInd)
            return mTreeNodeArr[pCurrNode];

        // そうでなければ、2つの子の最大値
        long ChildNode1 = DeriveChildNode(pCurrNode);
        long ChildNode2 = ChildNode1 + 1;

        long ChildVal1 = Private_Query(pSearchStaInd, pSearchEndInd, ChildNode1);
        long ChildVal2 = Private_Query(pSearchStaInd, pSearchEndInd, ChildNode2);
        return Math.Max(ChildVal1, ChildVal2);
    }
}
#endregion


解説

数列の最大長[現在位置]なDP表を
貰うDPで更新してます。

遷移の高速化で、1点更新で区間取得なセグメント木を使ってます。