AtCoderのABC    次のABCの問題へ    前のABCの問題へ

ABC386-D Diagonal Separation


問題へのリンク


C#のソース

using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static string InputPattern = "InputX";

    static List<string> GetInputList()
    {
        var WillReturn = new List<string>();

        if (InputPattern == "Input1") {
            WillReturn.Add("4 3");
            WillReturn.Add("4 1 B");
            WillReturn.Add("3 2 W");
            WillReturn.Add("1 3 B");
            //Yes
        }
        else if (InputPattern == "Input2") {
            WillReturn.Add("2 2");
            WillReturn.Add("1 2 W");
            WillReturn.Add("2 2 B");
            //No
        }
        else if (InputPattern == "Input3") {
            WillReturn.Add("1 1");
            WillReturn.Add("1 1 W");
            //Yes
        }
        else if (InputPattern == "Input4") {
            WillReturn.Add("2289 10");
            WillReturn.Add("1700 1083 W");
            WillReturn.Add("528 967 B");
            WillReturn.Add("1789 211 W");
            WillReturn.Add("518 1708 W");
            WillReturn.Add("1036 779 B");
            WillReturn.Add("136 657 B");
            WillReturn.Add("759 1497 B");
            WillReturn.Add("902 1309 B");
            WillReturn.Add("1814 712 B");
            WillReturn.Add("936 763 B");
            //No
        }
        else {
            string wkStr;
            while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
        }
        return WillReturn;
    }

    struct XYCInfoDef
    {
        internal long X;
        internal long Y;
        internal string C;
    }
    static List<XYCInfoDef> mXYCInfoList = new List<XYCInfoDef>();

    static void Main()
    {
        List<string> InputList = GetInputList();

        var XSet = new HashSet<long>();
        foreach (string Eachstr in InputList.Skip(1)) {
            string[] SplitArr = Eachstr.Split(' ');

            XYCInfoDef WillAdd;
            WillAdd.X = long.Parse(SplitArr[0]);
            WillAdd.Y = long.Parse(SplitArr[1]);
            WillAdd.C = SplitArr[2];
            mXYCInfoList.Add(WillAdd);
            XSet.Add(WillAdd.X);
        }

        Dictionary<long, long> ZaatuDict = DeriveZaatuDict(XSet);
        var InsLazySegmentTree = new LazySegmentTree(ZaatuDict.Count, 0);
        long UB_InsLazySegmentTree = InsLazySegmentTree.GetUB();

        var Query1 = mXYCInfoList.OrderBy(pX => pX.Y);
        foreach (XYCInfoDef EachXYCInfo in Query1) {
            if (EachXYCInfo.C != "B") continue;
            long ZaatuX = ZaatuDict[EachXYCInfo.X];
            InsLazySegmentTree.Internal_RangeUpdate(0, ZaatuX, EachXYCInfo.Y);
        }

        var Query2 = mXYCInfoList;
        foreach (XYCInfoDef EachXYCInfo in Query2) {
            if (EachXYCInfo.C != "W") continue;
            long ZaatuX = ZaatuDict[EachXYCInfo.X];

            long RangeMax = InsLazySegmentTree.Internal_Query(ZaatuX, UB_InsLazySegmentTree);
            if (RangeMax >= EachXYCInfo.Y) {
                Console.WriteLine("No");
                return;
            }
        }
        Console.WriteLine("Yes");
    }

    //////////////////////////////////////////////////////////////////////////
    // 列挙を引数として、座標圧縮し、座圧後の値[座圧前の値]なDictを返す
    //////////////////////////////////////////////////////////////////////////
    static Dictionary<long, long> DeriveZaatuDict(IEnumerable<long> pEnum)
    {
        var ZaatuDict = new Dictionary<long, long>();
        var ValSet = new HashSet<long>(pEnum);
        long No = 0;
        foreach (long EachVal in ValSet.OrderBy(pX => pX)) {
            ZaatuDict[EachVal] = No;
            No++;
        }
        return ZaatuDict;
    }
}

#region LazySegmentTree
// LazySegmentTreeクラス (RMaxQ and RUQ)
internal class LazySegmentTree
{
    private long[] mTreeNodeArr;
    private long UB; // 木のノードの配列のUB
    private long mLeafCnt; // 葉ノードの数
    private long mExternalArrUB;

    private long?[] mLazyArr; // 遅延配列

    // ノードの添字を引数とし、範囲の開始添字と終了添字を持つ配列
    private struct RangeInfoDef
    {
        internal long StaInd;
        internal long EndInd;
    }
    private RangeInfoDef[] mRangeInfo;

    // ノードのIndexの列挙を返す
    internal IEnumerable<long> GetNodeIndEnum()
    {
        for (long I = 0; I <= mExternalArrUB; I++) {
            yield return I;
        }
    }

    // 木のノードのUBを返す
    internal long GetUB()
    {
        return mExternalArrUB;
    }

    // コンストラクタ
    internal LazySegmentTree(long pExternalArrUB, long pInitVal)
    {
        mExternalArrUB = pExternalArrUB;

        // 簡単のため、葉ノード数を2のべき乗に
        long ArrLength = 0;
        for (long I = 1; I < long.MaxValue; I *= 2) {
            ArrLength += I;
            mLeafCnt = I;

            if (pExternalArrUB + 1 < mLeafCnt) break;
        }

        // すべての値をpInitValに
        UB = ArrLength - 1;
        mTreeNodeArr = new long[UB + 1];
        for (long I = 0; I <= UB; I++) {
            mTreeNodeArr[I] = pInitVal;
        }

        // 遅延配列を初期化
        mLazyArr = new long?[UB + 1];

        // ノードの添字を引数とし、範囲の開始添字と終了添字を持つ配列の作成
        mRangeInfo = new RangeInfoDef[UB + 1];
        for (long I = 0; I <= UB; I++) {
            if (I == 0) {
                RangeInfoDef WillSet1;
                WillSet1.StaInd = 0;
                WillSet1.EndInd = mLeafCnt - 1;
                mRangeInfo[I] = WillSet1;
                continue;
            }
            long ParentNode = DeriveParentNode(I);
            RangeInfoDef ParentRangeInfo = mRangeInfo[ParentNode];

            RangeInfoDef WillSet2;
            long Mid = (ParentRangeInfo.StaInd + ParentRangeInfo.EndInd) / 2;

            if (I % 2 == 1) { // 奇数ノードの場合
                WillSet2.StaInd = ParentRangeInfo.StaInd;
                WillSet2.EndInd = Mid;
            }
            else { // 偶数ノードの場合
                WillSet2.StaInd = Mid + 1;
                WillSet2.EndInd = ParentRangeInfo.EndInd;
            }
            mRangeInfo[I] = WillSet2;
        }
    }

    // 親ノードの添字を取得
    private long DeriveParentNode(long pTarget)
    {
        return (pTarget - 1) / 2;
    }

    // 子ノードの添字(小さいほう)を取得
    private long DeriveChildNode(long pTarget)
    {
        return pTarget * 2 + 1;
    }

    // カレントノードを引数として、遅延評価を行う
    private void LazyEval(long pCurrNode)
    {
        // 遅延配列が空なら何もしない
        if (mLazyArr[pCurrNode].HasValue == false) return;

        // 遅延配列の値を反映する
        mTreeNodeArr[pCurrNode] = mLazyArr[pCurrNode].Value;

        long ChildNode1 = DeriveChildNode(pCurrNode);
        long ChildNode2 = ChildNode1 + 1;

        if (ChildNode1 <= UB) {
            mLazyArr[ChildNode1] = mLazyArr[pCurrNode].Value;
        }
        if (ChildNode2 <= UB) {
            mLazyArr[ChildNode2] = mLazyArr[pCurrNode].Value;
        }

        // 伝播が終わったので、自ノードの遅延配列を空にする
        mLazyArr[pCurrNode] = null;
    }

    // 開始添字と終了添字とカレントノードを引数として、区間更新を行う
    internal void Internal_RangeUpdate(long pSearchStaInd, long pSearchEndInd, long pUpdateVal)
    {
        Private_RangeUpdate(pSearchStaInd, pSearchEndInd, pUpdateVal, 0);
    }
    private void Private_RangeUpdate(long pSearchStaInd, long pSearchEndInd, long pUpdateVal, long pCurrNode)
    {
        // カレントノードの遅延評価を行う
        LazyEval(pCurrNode);

        long CurrNodeStaInd = mRangeInfo[pCurrNode].StaInd;
        long CurrNodeEndInd = mRangeInfo[pCurrNode].EndInd;

        // OverLapしてなければ、何もしない
        if (CurrNodeEndInd < pSearchStaInd || pSearchEndInd < CurrNodeStaInd) {
            return;
        }

        // 完全に含んでいれば、遅延配列に値を入れた後に評価
        if (pSearchStaInd <= CurrNodeStaInd && CurrNodeEndInd <= pSearchEndInd) {
            mLazyArr[pCurrNode] = pUpdateVal;
            LazyEval(pCurrNode);
            return;
        }

        // そうでなければ、2つの区間に再帰呼出し
        long ChildNode1 = DeriveChildNode(pCurrNode);
        long ChildNode2 = ChildNode1 + 1;

        Private_RangeUpdate(pSearchStaInd, pSearchEndInd, pUpdateVal, ChildNode1);
        Private_RangeUpdate(pSearchStaInd, pSearchEndInd, pUpdateVal, ChildNode2);

        // カレントノードの更新
        mTreeNodeArr[pCurrNode] = Math.Max(mTreeNodeArr[ChildNode1], mTreeNodeArr[ChildNode2]);
    }

    // 開始添字と終了添字とカレントノードを引数として、最大値を返す
    internal long Internal_Query(long pSearchStaInd, long pSearchEndInd)
    {
        return Private_Query(pSearchStaInd, pSearchEndInd, 0);
    }
    private long Private_Query(long pSearchStaInd, long pSearchEndInd, long pCurrNode)
    {
        // 該当ノードを遅延評価する
        LazyEval(pCurrNode);

        long CurrNodeStaInd = mRangeInfo[pCurrNode].StaInd;
        long CurrNodeEndInd = mRangeInfo[pCurrNode].EndInd;

        // OverLapしてなければ、long.MinValue
        if (CurrNodeEndInd < pSearchStaInd || pSearchEndInd < CurrNodeStaInd)
            return long.MinValue;

        // 完全に含んでいれば、このノードの値
        if (pSearchStaInd <= CurrNodeStaInd && CurrNodeEndInd <= pSearchEndInd)
            return mTreeNodeArr[pCurrNode];

        // そうでなければ、2つの子の最大値
        long ChildNode1 = DeriveChildNode(pCurrNode);
        long ChildNode2 = ChildNode1 + 1;

        long ChildVal1 = Private_Query(pSearchStaInd, pSearchEndInd, ChildNode1);
        long ChildVal2 = Private_Query(pSearchStaInd, pSearchEndInd, ChildNode2);
        return Math.Max(ChildVal1, ChildVal2);
    }

    internal void DebugPrint()
    {
        for (long I = 0; I <= UB; I++) {
            if (mLazyArr[I].HasValue) {
                Console.WriteLine("mTreeNodeArr[{0}] = {1} , mLazyArr[{0}] = {2}",
                    I, mTreeNodeArr[I], mLazyArr[I]);
            }
            else {
                Console.WriteLine("mTreeNodeArr[{0}] = {1}", I, mTreeNodeArr[I]);
            }
        }
    }
}
#endregion


解説

区間更新、区間Max取得な遅延セグ木を用意して、X座標は座圧し、
下記の手順で判定してます。

最初にBをY座標の昇順で見て息、[0,X]にYを設定。
次にWを見ていき、Y座標が[X,UB]の最大値以下ならNG。