AtCoderのABC    次のABCの問題へ    前のABCの問題へ

ABC153-F Silver Fox vs Monster


問題へのリンク


C#のソース

using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static string InputPattern = "InputX";

    static List<string> GetInputList()
    {
        var WillReturn = new List<string>();

        if (InputPattern == "Input1") {
            WillReturn.Add("3 3 2");
            WillReturn.Add("1 2");
            WillReturn.Add("5 4");
            WillReturn.Add("9 2");
            //2
        }
        else if (InputPattern == "Input2") {
            WillReturn.Add("9 4 1");
            WillReturn.Add("1 5");
            WillReturn.Add("2 4");
            WillReturn.Add("3 3");
            WillReturn.Add("4 2");
            WillReturn.Add("5 1");
            WillReturn.Add("6 2");
            WillReturn.Add("7 3");
            WillReturn.Add("8 4");
            WillReturn.Add("9 5");
            //5
        }
        else if (InputPattern == "Input3") {
            WillReturn.Add("3 0 1");
            WillReturn.Add("300000000 1000000000");
            WillReturn.Add("100000000 1000000000");
            WillReturn.Add("200000000 1000000000");
            //3000000000
        }
        else {
            string wkStr;
            while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
        }
        return WillReturn;
    }

    struct XHInfoDef
    {
        internal long X;
        internal long H;
    }

    static void Main()
    {
        List<string> InputList = GetInputList();

        long[] wkArr = { };
        Action<string> SplitAct = pStr =>
            wkArr = pStr.Split(' ').Select(pX => long.Parse(pX)).ToArray();

        SplitAct(InputList[0]);
        long D = wkArr[1];
        long A = wkArr[2];

        var XHInfoList = new List<XHInfoDef>();
        foreach (string EachStr in InputList.Skip(1)) {
            SplitAct(EachStr);
            XHInfoDef WillAdd;
            WillAdd.X = wkArr[0];
            WillAdd.H = wkArr[1];
            XHInfoList.Add(WillAdd);
        }
        XHInfoList = XHInfoList.OrderBy(pX => pX.X).ToList();

        // 座圧後の値[座圧前の値]なDict
        Dictionary<long, long> ZaatuDict = DeriveZaatuDict(XHInfoList.Select(pX => pX.X));

        var InsLazySegmentTree = new LazySegmentTree(ZaatuDict.Count);
        foreach (XHInfoDef EachXHInfo in XHInfoList) {
            long ZaatuVal = ZaatuDict[EachXHInfo.X];
            InsLazySegmentTree.RangeAdd(ZaatuVal, ZaatuVal, EachXHInfo.H, 0);
        }

        long[] KeysArr = ZaatuDict.Keys.ToArray();

        long Answer = 0;
        foreach (XHInfoDef EachXHInfo in XHInfoList) {
            long ZaatuValSta = ZaatuDict[EachXHInfo.X];
            long CurrVal = InsLazySegmentTree.Query(ZaatuValSta, ZaatuValSta, 0);
            if (CurrVal <= 0) continue;

            long Cnt = CurrVal / A;
            if (CurrVal % A > 0) Cnt++;

            long RangeEnd = EachXHInfo.X + 2 * D;
            int LowerOrEqual_Max = ExecNibunhou_LowerOrEqual_Max(RangeEnd, KeysArr);
            long ZaatuValEnd = ZaatuDict[KeysArr[LowerOrEqual_Max]];

            InsLazySegmentTree.RangeAdd(ZaatuValSta, ZaatuValEnd, -(Cnt * A), 0);
            Answer += Cnt;
        }
        Console.WriteLine(Answer);
    }

    //////////////////////////////////////////////////////////////////////////
    // 列挙を引数として、座標圧縮し、座圧後の値[座圧前の値]なDictを返す
    //////////////////////////////////////////////////////////////////////////
    static Dictionary<long, long> DeriveZaatuDict(IEnumerable<long> pEnum)
    {
        var ZaatuDict = new Dictionary<long, long>();
        var ValSet = new HashSet<long>(pEnum);
        long No = 0;
        foreach (int EachVal in ValSet.OrderBy(pX => pX)) {
            ZaatuDict[EachVal] = No;
            No++;
        }
        return ZaatuDict;
    }

    // 二分法で、Val以下で最大の値を持つ、添字を返す
    static int ExecNibunhou_LowerOrEqual_Max(long pVal, long[] pArr)
    {
        // 最後の要素がVal以下の特殊ケース
        if (pVal >= pArr.Last()) {
            return pArr.GetUpperBound(0);
        }
        // 最初の要素がVal超えの特殊ケース
        if (pVal < pArr[0]) {
            return -1;
        }

        int L = 0;
        int R = pArr.GetUpperBound(0);

        while (L + 1 < R) {
            int Mid = (L + R) / 2;

            if (pArr[Mid] <= pVal) {
                L = Mid;
            }
            else {
                R = Mid;
            }
        }
        return L;
    }
}

#region LazySegmentTree
// LazySegmentTreeクラス (RSQ and RAQ)
internal class LazySegmentTree
{
    private long[] mTreeNodeArr;
    private long UB; // 木のノードの配列のUB
    private long mLeafCnt; // 葉ノードの数

    private long[] mLazyArr; // 遅延配列

    // ノードの添字を引数とし、範囲の開始添字と終了添字を持つ配列
    private struct RangeInfoDef
    {
        internal long StaInd;
        internal long EndInd;
    }
    private RangeInfoDef[] mRangeInfo;

    // コンストラクタ
    internal LazySegmentTree(long pLeafCnt)
    {
        // 簡単のため、葉ノード数を2のべき乗に
        long ArrLength = 0;
        for (long I = 1; I < long.MaxValue; I *= 2) {
            ArrLength += I;
            mLeafCnt = I;

            if (pLeafCnt < mLeafCnt) break;
        }

        // すべての値を0に
        UB = ArrLength - 1;
        mTreeNodeArr = new long[UB + 1];
        for (int I = 0; I <= UB; I++) {
            mTreeNodeArr[I] = 0;
        }

        // 遅延配列を初期化
        mLazyArr = new long[UB + 1];

        // ノードの添字を引数とし、範囲の開始添字と終了添字を持つ配列の作成
        mRangeInfo = new RangeInfoDef[UB + 1];
        for (long I = 0; I <= UB; I++) {
            if (I == 0) {
                RangeInfoDef WillSet1;
                WillSet1.StaInd = 0;
                WillSet1.EndInd = mLeafCnt - 1;
                mRangeInfo[I] = WillSet1;
                continue;
            }
            long ParentNode = DeriveParentNode(I);
            RangeInfoDef ParentRangeInfo = mRangeInfo[ParentNode];

            RangeInfoDef WillSet2;
            long Mid = (ParentRangeInfo.StaInd + ParentRangeInfo.EndInd) / 2;

            if (I % 2 == 1) { // 奇数ノードの場合
                WillSet2.StaInd = ParentRangeInfo.StaInd;
                WillSet2.EndInd = Mid;
            }
            else { // 偶数ノードの場合
                WillSet2.StaInd = Mid + 1;
                WillSet2.EndInd = ParentRangeInfo.EndInd;
            }
            mRangeInfo[I] = WillSet2;
        }
    }

    // 親ノードの添字を取得
    private long DeriveParentNode(long pTarget)
    {
        return (pTarget - 1) / 2;
    }

    // 子ノードの添字(小さいほう)を取得
    private long DeriveChildNode(long pTarget)
    {
        return pTarget * 2 + 1;
    }

    // 開始添字と終了添字とカレントノードを引数として、区間加算を行う
    internal void RangeAdd(long pSearchStaInd, long pSearchEndInd, long pAddVal, long pCurrNode)
    {
        // カレントノードの遅延評価を行う
        LazyEval(pCurrNode);

        long CurrNodeStaInd = mRangeInfo[pCurrNode].StaInd;
        long CurrNodeEndInd = mRangeInfo[pCurrNode].EndInd;

        // OverLapしてなければ、何もしない
        if (CurrNodeEndInd < pSearchStaInd || pSearchEndInd < CurrNodeStaInd)
            return;

        // 完全に含んでいれば、遅延配列に値を入れた後に評価
        if (pSearchStaInd <= CurrNodeStaInd && CurrNodeEndInd <= pSearchEndInd) {
            mLazyArr[pCurrNode] += pAddVal * (CurrNodeEndInd - CurrNodeStaInd + 1);
            LazyEval(pCurrNode);
            return;
        }

        // そうでなければ、2つの区間に再帰呼出し
        long ChildNode1 = DeriveChildNode(pCurrNode);
        long ChildNode2 = ChildNode1 + 1;

        RangeAdd(pSearchStaInd, pSearchEndInd, pAddVal, ChildNode1);
        RangeAdd(pSearchStaInd, pSearchEndInd, pAddVal, ChildNode2);
        mTreeNodeArr[pCurrNode] = mTreeNodeArr[ChildNode1] + mTreeNodeArr[ChildNode2];
    }

    // 開始添字と終了添字とカレントノードを引数として、Sumを返す
    internal long Query(long pSearchStaInd, long pSearchEndInd, long pCurrNode)
    {
        // 該当ノードを遅延評価する
        LazyEval(pCurrNode);

        long CurrNodeStaInd = mRangeInfo[pCurrNode].StaInd;
        long CurrNodeEndInd = mRangeInfo[pCurrNode].EndInd;

        // OverLapしてなければ、0
        if (CurrNodeEndInd < pSearchStaInd || pSearchEndInd < CurrNodeStaInd)
            return 0;

        // 完全に含んでいれば、このノードの値
        if (pSearchStaInd <= CurrNodeStaInd && CurrNodeEndInd <= pSearchEndInd)
            return mTreeNodeArr[pCurrNode];

        // そうでなければ、2つの子のSum
        long ChildNode1 = DeriveChildNode(pCurrNode);
        long ChildNode2 = ChildNode1 + 1;

        long ChildVal1 = Query(pSearchStaInd, pSearchEndInd, ChildNode1);
        long ChildVal2 = Query(pSearchStaInd, pSearchEndInd, ChildNode2);
        return ChildVal1 + ChildVal2;
    }

    // カレントノードを引数として、遅延評価を行う
    void LazyEval(long pCurrNode)
    {
        // 遅延配列が0なら何もしない
        if (mLazyArr[pCurrNode] == 0) return;

        // 遅延配列の値を設定する
        mTreeNodeArr[pCurrNode] += mLazyArr[pCurrNode];

        long ChildNode1 = DeriveChildNode(pCurrNode);
        long ChildNode2 = ChildNode1 + 1;

        if (ChildNode1 <= UB) mLazyArr[ChildNode1] += mLazyArr[pCurrNode] / 2;
        if (ChildNode2 <= UB) mLazyArr[ChildNode2] += mLazyArr[pCurrNode] / 2;

        // 伝播が終わったので、自ノードの遅延配列を空にする
        mLazyArr[pCurrNode] = 0;
    }

    internal void DebugPrint()
    {
        for (int I = 0; I <= UB; I++) {
            if (mLazyArr[I] > 0) {
                Console.WriteLine("mTreeNodeArr[{0}] = {1} , mLazyArr[{0}] = {2}",
                    I, mTreeNodeArr[I], mLazyArr[I]);
            }
            else {
                Console.WriteLine("mTreeNodeArr[{0}] = {1}", I, mTreeNodeArr[I]);
            }
        }
    }
}
#endregion


解説

左端から貪欲に走査してます。
区間加算が必要なので、座標圧縮して、遅延セグ木を使ってます。