using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
static string InputPattern = "InputX";
static List<string> GetInputList()
{
var WillReturn = new List<string>();
if (InputPattern == "Input1") {
WillReturn.Add("5");
//55555
}
else if (InputPattern == "Input2") {
WillReturn.Add("9");
//1755646
}
else if (InputPattern == "Input3") {
WillReturn.Add("10000000000");
//468086693
}
else {
string wkStr;
while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
}
return WillReturn;
}
const long Hou = 998244353;
static void Main()
{
List<string> InputList = GetInputList();
long N = long.Parse(InputList[0]);
long Kouhi = 1;
for (long I = 1; I <= N.ToString().Length; I++) {
Kouhi *= 10;
Kouhi %= Hou;
}
long Syokou = N;
long Kousuu = N;
long TouhisuuretuSum = DeriveTouhisuuretuSum(Syokou, Kouhi, Kousuu, Hou);
Console.WriteLine(TouhisuuretuSum);
}
// 初項,公比,項数,法を引数とし、等比数列の和を返す(法が逆元を持たなくても可)
static long DeriveTouhisuuretuSum(long pSyokou, long pKouhi, long pKousuu, long pHou)
{
pSyokou %= pHou;
// 項数が1の場合
if (pKousuu == 1) {
return pSyokou;
}
// 項数が奇数の場合
if (pKousuu % 2 == 1) {
long WillReturn = pSyokou;
WillReturn += DeriveTouhisuuretuSum(pSyokou * pKouhi, pKouhi, pKousuu - 1, pHou);
WillReturn %= pHou;
return WillReturn;
}
// 項数が偶数の場合
long SumLeft = DeriveTouhisuuretuSum(pSyokou, pKouhi, pKousuu / 2, pHou);
SumLeft %= pHou;
long SumRight = SumLeft * DeriveBekijyou(pKouhi, pKousuu / 2, pHou);
SumRight %= pHou;
return (SumLeft + SumRight) % pHou;
}
// 繰り返し2乗法で、(NのP乗) Mod Mを求める
static long DeriveBekijyou(long pN, long pP, long pM)
{
long CurrJyousuu = pN % pM;
long CurrShisuu = 1;
long WillReturn = 1;
while (true) {
// 対象ビットが立っている場合
if ((pP & CurrShisuu) > 0) {
WillReturn = (WillReturn * CurrJyousuu) % pM;
}
CurrShisuu *= 2;
if (CurrShisuu > pP) return WillReturn;
CurrJyousuu = (CurrJyousuu * CurrJyousuu) % pM;
}
}
}