using System;
using System.Collections.Generic;
using System.Linq;
class Program
{
static string InputPattern = "InputX";
static List<string> GetInputList()
{
var WillReturn = new List<string>();
if (InputPattern == "Input1") {
WillReturn.Add("4");
WillReturn.Add("2 1 1 4");
//8
}
else if (InputPattern == "Input2") {
WillReturn.Add("5");
WillReturn.Add("2 4 3 1 2");
//14
}
else if (InputPattern == "Input3") {
WillReturn.Add("10");
WillReturn.Add("6 10 4 1 5 9 8 6 5 1");
//41
}
else {
string wkStr;
while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
}
return WillReturn;
}
static int mNodeCnt;
static List<int>[] mSeiEdgeListArr; // 隣接グラフ(正方向)
static List<int>[] mRevEdgeListArr; // 隣接グラフ(逆方向)
// 強連結成分の代表値[ノード]なDict
static Dictionary<int, int> mRootNodeDict = new Dictionary<int, int>();
// ノード数[強連結成分の代表値]なDict
static Dictionary<int, int> mNodeCntDict = new Dictionary<int, int>();
// サイクルノードのSet
static HashSet<int> mCycleNodeSet = new HashSet<int>();
static void Main()
{
List<string> InputList = GetInputList();
mNodeCnt = int.Parse(InputList[0]);
int[] AArr = InputList[1].Split(' ').Select(pX => int.Parse(pX)).ToArray();
mSeiEdgeListArr = new List<int>[mNodeCnt + 1];
mRevEdgeListArr = new List<int>[mNodeCnt + 1];
for (int I = 1; I <= mNodeCnt; I++) {
mSeiEdgeListArr[I] = new List<int>();
mRevEdgeListArr[I] = new List<int>();
}
for (int I = 0; I <= AArr.GetUpperBound(0); I++) {
int FromNode = I + 1;
int ToNode = AArr[I];
mSeiEdgeListArr[FromNode].Add(ToNode);
mRevEdgeListArr[ToNode].Add(FromNode);
}
// 強連結成分の代表値[ノード]なDict
mRootNodeDict = SCC_Class.Exec_SCC(1, mNodeCnt, mSeiEdgeListArr, mRevEdgeListArr);
// ノード数[強連結成分の代表値]なDict
foreach (var EachPair in mRootNodeDict) {
if (mNodeCntDict.ContainsKey(EachPair.Value) == false) {
mNodeCntDict[EachPair.Value] = 0;
}
mNodeCntDict[EachPair.Value]++;
}
// サイクルかの判定
for (int I = 1; I <= mNodeCnt; I++) {
// 場合1 代表が同じノードが2以上存在
int RootNode = mRootNodeDict[I];
if (mNodeCntDict[RootNode] >= 2) {
mCycleNodeSet.Add(I);
}
// 場合2 自己ループの場合
if (mSeiEdgeListArr[I].Contains(I)) {
mCycleNodeSet.Add(I);
}
}
long Answer = 0;
for (int I = 1; I <= mNodeCnt; I++) {
long CurrAnswer = DeriveNodeCnt(I);
Answer += CurrAnswer;
}
Console.WriteLine(Answer);
}
// メモ化再帰
static Dictionary<int, int> mMemo = new Dictionary<int, int>();
static int DeriveNodeCnt(int pCurrNode)
{
if (mMemo.ContainsKey(pCurrNode)) {
return mMemo[pCurrNode];
}
if (mCycleNodeSet.Contains(pCurrNode)) {
int RootNode = mRootNodeDict[pCurrNode];
return mNodeCntDict[RootNode];
}
int ToNode = mSeiEdgeListArr[pCurrNode][0];
return mMemo[pCurrNode] = 1 + DeriveNodeCnt(ToNode);
}
}
#region SCC_Class
// 有向グラフの強連結成分分解クラス
internal static class SCC_Class
{
private static int mTimer;
private static List<int>[] mSeiEdgeListArr;
private static List<int>[] mRevEdgeListArr;
private static bool[] mVisitedArr;
private static int[] mPostNumArr;
// 最小のノードID,最大のノードID,隣接グラフ(正方向),隣接グラフ(逆方向)を引数として、
// 有向グラフを強連結成分分解し、
// 強連結成分の代表値[ノード]なDictを返す
internal static Dictionary<int, int> Exec_SCC(int pMinNodeID, int pMaxNodeID,
List<int>[] pSeiEdgeListArr, List<int>[] pRevEdgeListArr)
{
int UB = pMaxNodeID;
mSeiEdgeListArr = pSeiEdgeListArr;
mRevEdgeListArr = pRevEdgeListArr;
mVisitedArr = new bool[UB + 1];
mPostNumArr = new int[UB + 1];
// 処理01 深さ優先探索を行い、帰りがけで番号を振る
mTimer = 1;
for (int I = pMinNodeID; I <= UB; I++) {
ExecDFS1(I);
}
// ノード[帰りがけでの番号]なDict
var PostNumIndDict = new Dictionary<int, int>();
for (int I = pMinNodeID; I <= UB; I++) {
PostNumIndDict[mPostNumArr[I]] = I;
}
// 訪問済配列の初期化
mVisitedArr = new bool[UB + 1];
// 強連結成分の代表値[ノード]なDict
var RootNodeDict = new Dictionary<int, int>();
foreach (var EachPair in PostNumIndDict.OrderByDescending(pX => pX.Key)) {
if (mVisitedArr[EachPair.Value]) continue;
// 処理02 枝の向きを反転して、深さ優先探索を行う
HashSet<int> VisitedSet = ExecDFS2(EachPair.Value);
foreach (int EachNode in VisitedSet) {
RootNodeDict[EachNode] = EachPair.Value;
}
}
return RootNodeDict;
}
// 処理01 深さ優先探索を行い、帰りがけで番号を振る
private static void ExecDFS1(int pCurr)
{
if (mVisitedArr[pCurr]) return;
mVisitedArr[pCurr] = true;
foreach (int EachNext in mSeiEdgeListArr[pCurr]) {
ExecDFS1(EachNext);
}
mPostNumArr[pCurr] = mTimer++;
}
struct JyoutaiDef_SCC
{
internal int CurrNode;
}
// 処理02 枝の向きを反転して、深さ優先探索を行う
static HashSet<int> ExecDFS2(int pStaNode)
{
var Stk = new Stack<JyoutaiDef_SCC>();
JyoutaiDef_SCC WillPush;
WillPush.CurrNode = pStaNode;
Stk.Push(WillPush);
var VisitedSet = new HashSet<int>();
VisitedSet.Add(pStaNode);
mVisitedArr[pStaNode] = true;
while (Stk.Count > 0) {
JyoutaiDef_SCC Popped = Stk.Pop();
VisitedSet.Add(Popped.CurrNode);
mVisitedArr[Popped.CurrNode] = true;
foreach (int EachNext in mRevEdgeListArr[Popped.CurrNode]) {
if (mVisitedArr[EachNext]) continue;
WillPush.CurrNode = EachNext;
Stk.Push(WillPush);
}
}
return VisitedSet;
}
}
#endregion