情報オリンピック    前の情報オリンピックの問題へ

JOI 2024/2025 本選 B問題 勇者ビ太郎 2 (Bitaro the Brave 2)


問題へのリンク


C#のソース

using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static string InputPattern = "InputX";

    static List<string> GetInputList()
    {
        var WillReturn = new List<string>();

        if (InputPattern == "Input1") {
            WillReturn.Add("5");
            WillReturn.Add("1 3 2 8 6");
            WillReturn.Add("4 3 1 1 2");
            //1
        }
        else if (InputPattern == "Input2") {
            WillReturn.Add("5");
            WillReturn.Add("1 6 3 3 2");
            WillReturn.Add("1 2 1 0 1");
            //3
        }
        else if (InputPattern == "Input3") {
            WillReturn.Add("10");
            WillReturn.Add("11 9 8 12 7 7 8 12 9 10");
            WillReturn.Add("1 1 1 1 1 1 1 1 1 1");
            //9
        }
        else if (InputPattern == "Input4") {
            WillReturn.Add("7");
            WillReturn.Add("1125 638 0 37 737 820 1202");
            WillReturn.Add("23 984 558 350 52 345 580");
            //0
        }
        else {
            string wkStr;
            while ((wkStr = Console.ReadLine()) != null) WillReturn.Add(wkStr);
        }
        return WillReturn;
    }

    static long[] GetSplitArr(string pStr)
    {
        return (pStr == "" ? new string[0] : pStr.Split(' ')).Select(pX => long.Parse(pX)).ToArray();
    }

    class CalcInfoDef
    {
        internal long A;
        internal long B;
        internal long RunSumB;
        internal long RunSumBMinusA;
    }
    static List<CalcInfoDef> mCalcInfoList = new List<CalcInfoDef>();

    static void Main()
    {
        List<string> InputList = GetInputList();
        long[] AArr = GetSplitArr(InputList[1]);
        long[] BArr = GetSplitArr(InputList[2]);
        long UB_Half = AArr.GetUpperBound(0);
        long Half_Len = AArr.Length;

        // 環状に対応
        for (long I = 1; I <= 2; I++) {
            for (long J = 0; J <= AArr.GetUpperBound(0); J++) {
                var WillAdd = new CalcInfoDef();
                WillAdd.A = AArr[J];
                WillAdd.B = BArr[J];
                mCalcInfoList.Add(WillAdd);
            }
        }

        for (int I = 0; I <= mCalcInfoList.Count - 1; I++) {
            if (I == 0) {
                mCalcInfoList[I].RunSumB = 0;
            }
            else {
                mCalcInfoList[I].RunSumB = mCalcInfoList[I - 1].RunSumB + mCalcInfoList[I - 1].B;
            }

            mCalcInfoList[I].RunSumBMinusA = mCalcInfoList[I].RunSumB - mCalcInfoList[I].A;
        }

        var InsSegmentTree = new SegmentTree(mCalcInfoList.Count - 1, 0);
        for (long I = 0; I <= mCalcInfoList.Count - 1; I++) {
            InsSegmentTree.Update(I, mCalcInfoList[(int)I].RunSumBMinusA);
        }

        long DiffMax = long.MinValue;
        long AddVal = 0;
        for (long I = 0; I <= UB_Half; I++) {
            long RangeSta = I;
            long RangeEnd = mCalcInfoList.Count - 1;
            long RangeMin = InsSegmentTree.Internal_Query(RangeSta, RangeSta + Half_Len - 1);
            RangeMin += AddVal;

            DiffMax = Math.Max(DiffMax, RangeMin);

            if (I + 1 <= mCalcInfoList.Count - 1) {
                AddVal += mCalcInfoList[(int)I].B * (-1);
            }
        }
        Console.WriteLine(Math.Abs(DiffMax));
    }
}

#region SegmentTree
// SegmentTreeクラス (RMQ and 1点更新)
internal class SegmentTree
{
    private long[] mTreeNodeArr;
    private long UB; // 木のノードの配列のUB
    private long mLeafCnt; // 葉ノードの数
    private long mExternalArrUB;

    // ノードの添字を引数とし、範囲の開始添字と終了添字を持つ配列
    private struct RangeInfoDef
    {
        internal long StaInd;
        internal long EndInd;
    }
    private RangeInfoDef[] mRangeInfo;

    // ノードのIndexの列挙を返す
    internal IEnumerable<long> GetNodeIndEnum()
    {
        for (long I = 0; I <= mExternalArrUB; I++) {
            yield return I;
        }
    }

    // 木のノードのUBを返す
    internal long GetUB()
    {
        return mExternalArrUB;
    }

    // コンストラクタ
    internal SegmentTree(long pExternalArrUB, long pInitVal)
    {
        mExternalArrUB = pExternalArrUB;

        // 簡単のため、葉ノード数を2のべき乗に
        long ArrLength = 0;
        for (long I = 1; I < long.MaxValue; I *= 2) {
            ArrLength += I;
            mLeafCnt = I;

            if (pExternalArrUB + 1 < mLeafCnt) break;
        }

        // すべての値をpInitValに
        UB = ArrLength - 1;
        mTreeNodeArr = new long[UB + 1];
        for (long I = 0; I <= UB; I++) {
            mTreeNodeArr[I] = pInitVal;
        }

        // ノードの添字を引数とし、範囲の開始添字と終了添字を持つ配列の作成
        mRangeInfo = new RangeInfoDef[UB + 1];
        for (long I = 0; I <= UB; I++) {
            if (I == 0) {
                RangeInfoDef WillSet1;
                WillSet1.StaInd = 0;
                WillSet1.EndInd = mLeafCnt - 1;
                mRangeInfo[I] = WillSet1;
                continue;
            }
            long ParentNode = DeriveParentNode(I);
            RangeInfoDef ParentRangeInfo = mRangeInfo[ParentNode];

            RangeInfoDef WillSet2;
            long Mid = (ParentRangeInfo.StaInd + ParentRangeInfo.EndInd) / 2;

            if (I % 2 == 1) { // 奇数ノードの場合
                WillSet2.StaInd = ParentRangeInfo.StaInd;
                WillSet2.EndInd = Mid;
            }
            else { // 偶数ノードの場合
                WillSet2.StaInd = Mid + 1;
                WillSet2.EndInd = ParentRangeInfo.EndInd;
            }
            mRangeInfo[I] = WillSet2;
        }
    }

    // 親ノードの添字を取得
    private long DeriveParentNode(long pTarget)
    {
        return (pTarget - 1) / 2;
    }

    // 子ノードの添字(小さいほう)を取得
    private long DeriveChildNode(long pTarget)
    {
        return pTarget * 2 + 1;
    }

    // 葉ノードの配列の添字を木の添字に変換して返す
    private long DeriveTreeNode(long pLeafArrInd)
    {
        long BaseInd = UB - mLeafCnt + 1;
        return BaseInd + pLeafArrInd;
    }

    // 葉ノードの配列のK番目の値をNewValに変更
    internal void Update(long pK, long pNewVal)
    {
        long CurrNode = DeriveTreeNode(pK);
        mTreeNodeArr[CurrNode] = pNewVal;

        // 登りながら更新
        while (CurrNode > 0) {
            CurrNode = DeriveParentNode(CurrNode);
            long ChildNode1 = DeriveChildNode(CurrNode);
            long ChildNode2 = ChildNode1 + 1;
            mTreeNodeArr[CurrNode] =
                Math.Min(mTreeNodeArr[ChildNode1], mTreeNodeArr[ChildNode2]);
        }
    }

    // 開始添字と終了添字とカレントノードを引数として、最小値を返す
    internal long Internal_Query(long pSearchStaInd, long pSearchEndInd)
    {
        return Private_Query(pSearchStaInd, pSearchEndInd, 0);
    }
    private long Private_Query(long pSearchStaInd, long pSearchEndInd, long pCurrNode)
    {
        long CurrNodeStaInd = mRangeInfo[pCurrNode].StaInd;
        long CurrNodeEndInd = mRangeInfo[pCurrNode].EndInd;

        // OverLapしてなければ、long.MaxValue
        if (CurrNodeEndInd < pSearchStaInd || pSearchEndInd < CurrNodeStaInd)
            return long.MaxValue;

        // 完全に含んでいれば、このノードの値
        if (pSearchStaInd <= CurrNodeStaInd && CurrNodeEndInd <= pSearchEndInd)
            return mTreeNodeArr[pCurrNode];

        // そうでなければ、2つの子の最小値
        long ChildNode1 = DeriveChildNode(pCurrNode);
        long ChildNode2 = ChildNode1 + 1;

        long ChildVal1 = Private_Query(pSearchStaInd, pSearchEndInd, ChildNode1);
        long ChildVal2 = Private_Query(pSearchStaInd, pSearchEndInd, ChildNode2);
        return Math.Min(ChildVal1, ChildVal2);
    }

    internal void DebugPrint()
    {
        for (long I = 0; I <= UB; I++) {
            Console.WriteLine("mTreeNodeArr[{0}] = {1}", I, mTreeNodeArr[I]);
        }
    }
}
#endregion


解説

      A    1 3 2 8 6  1  3  2  8  6
      B    4 3 1 1 2  4  3  1  1  2
RunSumB    0 4 7 8 9 11 15 18 19 20
RunSumB-A -1 1 5 0 3 10 12 16 11 14

上記の環状対応した図をみると、
RunSumB-Aの最小値の絶対値な最初に必要な強さだと分かります。

これをふまえ、
累積和の差分更新を、1点更新区間最小値取得なセグ木でシュミレーションしてます。

区間加算をAddValという変数で代用することで
区間更新区間最小値取得な遅延セグ木ではなく
1点更新区間最小値取得なセグ木でシュミレーションを可能にしてます。